
DeepFoids: Adaptive Bio-Inspired Fish Simulation
with Deep Reinforcement Learning

Yuko Ishiwaka1∗†, Xiao S. Zeng2∗, Shun Ogawa1,
Donovan Michael Westwater2, Tadayuki Tone1, Masaki Nakada2‡

1SoftBank Corp., Japan, 2 NeuralX Inc., USA

Abstract

Our goal is to synthesize realistic underwater scenes with various fish species
in different fish cages, which can be utilized to train computer vision models to
automate fish counting task. It is a challenging problem to prepare a sufficiently
diverse labeled dataset of images from aquatic environments. We solve this chal-
lenge by introducing an adaptive bio-inspired fish simulation. The behavior of
caged fish changes based on the species, size and number of fish, and the size
and shape of the cage, among other variables. In this paper, we propose a method
for achieving schooling behavior for any given combination of variables, using
multi-agent deep reinforcement learning (DRL) in various fish cages in arbitrary
environments. Furthermore, to visually reproduce the underwater scene in different
locations and seasons, we incorporate a physically-based underwater simulation.

1 Introduction

The sustainability of the food supply and the protection of marine resources are two of the most
important global issues, and are part of the agenda set by the United Nations to be achieved by 2030
§. Fish farming is one of the keys to a sustainable seafood supply to support the global population,
as seafood consumption is growing rapidly. One of the current major problems in the fish farming
industry is managing feeding. Under-feeding slows down the growth of the fish due to malnutrition.
Over-feeding is even worse as it can kill the fish and the residual food contaminates the marine
environment. Therefore, we attempt to automate fish counting using inexpensive commercially
available RGB cameras and computer vision to optimize the amount and timing of feeding.

Deep learning has achieved great success in the field of computer vision. The quality of the dataset
determines the accuracy of deep learning models, but it is difficult to obtain data to train a fish counting
model. Ishiwaka et al. [1] proposed a fish schooling simulation called Foids, and demonstrated
the efficacy of using a CG synthetic dataset for training. Foids adds rules based on fish biology
to the Boids [2] algorithm. However, both Boids and Foids require manually setting a number of
parameters for a given fish species, which must be adjusted again should any conditions change. To
solve this problem, we propose a method to autonomously generate schooling behavior in fish using
multi-agent deep reinforcement learning. Fish behavior in a fish farming cage depends not only on
natural factors like temperature and light intensity, but also the size and shape of the fish cage, and
even the species, number, and size of the fish themselves. By taking into account biological data such
as the preferred light intensity, temperature, and inter-fish distance of each fish, our method achieved
several distinct patterns of collective behavior depending on population density through autonomous

∗Yuko Ishiwaka and Xiao S. Zeng equally contributed to this work.
†yuko.ishiwaka@g.softbank.co.jp
‡masaki@neuralx.ai
§https://sdgs.un.org/2030agenda

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://sdgs.un.org/2030agenda

learning. Furthermore, we developed a physically-based underwater environment simulation. This
simulation is capable of accurately reproducing the conditions of underwater scenes of arbitrary
locations and seasons. The bio-inspired fish simulation and physically-based environment simulation
allow for the creation of a high-quality synthetic dataset, with which we successfully trained a deep
learning model to count fish of various species in fish cages.

In this paper, we explore related work in Sec. 2. We then describe the implementation details of the
simulation, data synthesis, and the computer vision models in Sec. 3 and 4. In Sec. 5, we show the
experimental results and analysis followed by a conclusion in Sec. 6.

2 Related Work

It is well known that mammals use reinforcement learning [3]. Experiments in neuroscience have
demonstrated that dopamine neurons play a role in rewards in reinforcement learning [4, 5, 6]. These
dopamine neurons are present not only in mammals but in flies and fish as well [7]. It has been shown
that dopamine neurons are used in cooperative behavior [8] and learning [9] in fish. Therefore, we
adopted reinforcement learning for training cooperative schooling behavior.

In the field of fish swimming simulations, DRL has been used to produce efficient swimming and
verify adaptation behavior [10, 11, 12, 13]. These studies focused on simulations of a few fish or
soft-bodied animals, but they did not cover large numbers of fish or differences between species.
Tu and Terzopoulos [14] proposed a fish simulation with perception, cognition and muscle based
locomotion. Lindsey [15] defined 12 types of locomotion in fish, and Satoi et al.[16] incorporated
this definition and proposed a controller which automatically selects a type of locomotion based on a
desired target behavior. Although those methods worked well at simulating individual fish behaviors,
they were not directly useful for our objective of simulating tens of thousands of fish, while forming
schooling behavior organically through interactions among the fish.

DRL-based approaches have also been studied for flocking control tasks [17, 18, 19] and crowd
simulation [20, 21]. These models do not take biological specifics and their influences on flocking
behaviors of simulated objects into consideration, while the adaptation of these species-dependent
characteristics constitute a crucial part of our fish control system.

There are relatively few publicly available computer vision datasets of underwater images. Three
major such datasets are OzFish [22], Deepfish [23], and a dataset from Ditria et al. [24]. These
datasets lack the species and environments seen in fish farms, making them unsuitable for our goals.

The biological properties we use in our simulation are aggregation, cohesion and separation rules[25,
26]; fish’s preferred temperature and light intensity [27, 28, 29]; personal space [30, 31]; sense of
depth due to hydrostatic pressure [32, 33]; response to obstacles [34, 35]; and decision making
interval [36], as well as the social ranking of fish. Fish often form dominance hierarchies, where the
dominant fish display aggressive behavior by chasing the subordinate individuals from time to time
[37, 38]. The details of the biological background are described in the Appendix. In this paper, we
set rewards and penalties for DRL based on these properties.

3 Fish Simulation

In this section, we introduce a bio-inspired fish simulation trained with DRL. The bold letters v, d
and u are used to denote directional 3D vectors, and the uppercase calligraphic letter I denotes a
higher-order tensor. We structure the behavioral model of fish as a multi-agent reinforcement learning
problem, where fish agents need to navigate around a constrained 3D space that resembles a fish
farm environment while adapting to multiple factors that simultaneously influence their behavior.
During the course of interacting with the environment and other fish, each agent acts based on its own
observations and is responsible for learning a general policy that maximizes a reward. We model the
policies using neural networks and optimize them using Proximal Policy Optimization (PPO) [39]
with Generalized Advantage Estimation (GAE) [40].

A schematic illustration of our fish simulation pipeline is provided in Fig.1. The parameters controlling
biological and environmental factors in the fish simulation are set based on the literature presented
in the Appendix and field data collected from fish farms at Onmaehama and Nishiki, Japan. Fish

2

Figure 1: Simulation framework. Figure 2: Architecture of policy network.

animation is generated by the finite state machine based on the velocity of the locomotion and the
fish’s behavior state, which is explained in more details in the Appendix.

Biological and Environmental Factors: We incorporate important biological and environmental
drivers of fish swimming patterns into the simulation framework. A fish stays within a comfortable
distance of its neighboring fish and aligns its direction with that of its nearest neighbor in the forward
direction [2, 41]. Its activity space is constrained by the cage boundaries and water surface, which
reproduce the commercial cage environment and facilitate the formation of schooling. Additionally,
caged fish are divided into dominant and subordinate groups, where the dominant individuals may
initiate antagonistic acts by aggressively approaching the subordinate members. These factors are
carefully integrated into the process of learning control policies that generate the delta velocity of
fish �vf

t at each time step t through the use of the PPO algorithm.

There are effects of underwater light intensity and temperature on the fish’s vertical distribution,
which we represent as �vlight and �vtemp. A fish has a preferred range of light intensity and water
temperature, and it changes its vertical position to stay in the comfortable zone. The details of the
computation are explained in the Appendix.

In addition to the above-mentioned components, we integrate the fish decision making interval into
the framework to emulate the latency of fish’s responses to environmental changes. The duration (in
units of simulation steps) of the decision making interval, �tres, for simulated species is predefined
in accordance with the literature studies described in Sec. 2. At the time of simulation, given the
time interval of simulation steps (�tsim), a fish updates its observation of the environment every
b�tres=�tsimc steps and takes actions between updates. The delta accumulated velocity to apply at
each simulation step (�va

t) can then be derived as follows:

�va
t = �vf

t +
�vlight + �vtemp

b�tres=�tsimc
: (1)

States and Actions: Each state st 2 state space S encodes the information a fish agent observes in
the environment at time step t. It can be represented by a tuple (ut; dt; It), where ut is the difference
between forward directions of the agent and its nearest neighboring fish in front of it at current step t,
dt is the depth of the agent with respect to the water surface, and It is a visual observation tensor.
During the time of exploration, a fish agent collects visual observations with a spatial grid sensor that
imitates the sensing area of real fish [42]. The visual observation is stored as a third-order tensor,
whose dimensions are grid width, grid height, and number of channels. The width and height are
defined by the grid resolution, which is set to be 34�20. There are 6 channels encoding a scalar value
of the normalized distance from the closest detected object within the fish’s sensing range dsense to
the agent and a one-hot encoding of the object type (i.e. fish, boundary or obstacle). dsense is valued
at 2 body lengths (BL) for yellowtail amberjack (yellowtail) [43] and 3 BL for coho salmon and red
seabream [42]. We stack three visual observations together to infer movement before passing them
to the networks. All the state components are computed in the local coordinate system of the agent,
with the origin located at the body center and the z-axis parallel to the fish’s facing direction. Note

3

that a simulated fish is not capable of precisely observing its speed and rotation since a real fish can
only sense its relative rotation through the use of the lateral line system [44, 45].

The action a 2 action space A determined by the policy specifies the delta speed (�vt), as well as
delta rotation about the x-axis (��x

t) and the y-axis (��y
t) in degrees. The rotation angle about the

z-axis is clamped blueto a small angle �zt to avoid unnatural rolling behavior. �vt is also clamped
by the maximum delta speed �vmax allowed in the cage environment. The three action components
are then used to compute the delta velocity of fish �vf

t at the current time step and thus drive the
motion of the fish agent as depicted in Eq. (1).

Reward: The reward rt at each time step is defined to encourage schooling behavior while avoiding
boundary collisions and to be consistent with the biological studies described in Sec. 2:

rt = rBC
t + rNC

t + rBD
t + rND

t + rE
t + rM

t + rC
t : (2)

The reward rBC
t represents the penalty of colliding with the spatial boundaries, which include the

cage walls and water surface. It has a fixed value of �300 if a boundary collision occurs or 0
otherwise. rNC

t penalizes the collision with neighboring fish detected by box colliders using an
associated weight wNC and accumulates with the number of colliding agents Nhit:

rNC
t = �wNC Nhit:

The boundary avoidance reward rBD
t encourages the fish to keep a distance from a detected spatial

boundary. Its value depends on the agent’s sensing range dsense, the number of detected boundaries
Nbnd, the distance di to the boundary i and the boundary avoidance weight wBD:

rBD
t = �wBD

Nbnd∑
i=1

(
dsense � di

dsense

)
:

The neighbor interaction reward rND
t encourages the fish to stay close to its neighbors within the

sensing range and to align its direction with those of its neighbors. The angle ��mov
i in degrees

between the directions of the agent and each of its Nnei neighbors is calculated and a neighbor
interaction weight wND is used for the computation:

rND
t = wND

Nnei∑
i=1

(
90���mov

i

90

)
:

On the other hand, rE
t penalizes energy consumption of the fish while rotating its body or adjusting

speed. It is computed from a rotation penalty weight wr, a speed penalty weight ws together with the
delta angle ��t of the body rotation and the delta accumulated speed �va

t at the current time step:

rE
t = �wr ��t � ws j�va

t j :
The movement reward rM

t encourages the fish to swim faster than a minimum speed and penalizes
sudden changes in depth caused by aggressive pitch motion (around the local x-axis). In the expression
below, the variable �rt denotes the pitch angle threshold, vst is the speed threshold, �x

t is the current
pitch angle, and va

t represents the current accumulated speed:

rM
t =

�10 if �rt � �x

t � (360� �rt):

2 if � �rt < �x
t � �rt and va

t � vst:

0 otherwise.

Lastly, rC
t denotes the chase reward which encourages aggression or escape behavior based on the

social rank of the fish. Specifically, a dominant fish (aggressor) randomly starts a chase mode with a
small probability pa and initiates an attack on its nearest subordinate neighbor (target). This triggers
the subordinate being chased to start its escape mode and swim away from the aggressor. We reward
the aggressor by a fixed large value if it collides with its target. This process can be expressed using
the aggressor’s accumulated velocity va

t , a normalized vector d spanning from the aggressor to the
target, a chase reward weight wagg for the aggressor, and an escape penalty weight wtar for the target
as follows:

rC
t =

wagg (d � va

t) if fish is an aggressor in chase mode and chases after its target.
100 if fish is an aggressor in chase mode and collides with its target.
�wtar (d � va

t) if fish is a target in escape mode.
0 otherwise.

4

(a) Scene (b) 2D and 3D bounding boxes (c) Silhouette

Figure 3: Synthetic dataset example. (a) scene rendering. (b) 2D and 3D bounding box annotations.
(c) silhouette annotation.

The chase and escape modes end for the two �sh either when they collide, the target escapes to the
back of the aggressor, or after a short period of time as the dominants prefer not wasting energy on a
prolonged chase. A detailed explanation of parameters used in action de�nition and reward function
is available in Appendix.

Network: The simulation of realistic �sh schooling behaviors can be broken down into a series
of tasks where �sh agents need to choose optimal actions from continuous action space. In the
Actor-Critic framework used by PPO, a policy (actor)� is modeled as a neural network (Fig. 2)
that maps a statest to a Gaussian distribution over action� (at jst). The agent's visual observation
I t , which is formed as a 3D tensor, is processed by a visual encoder comprising two convolutional
layers and a dense layer before being passed to a fully-connected network with other observation
components. The �rst and the second convolutional layers contain 16 8� 8 �lters and 32 4� 4 �lters
respectively and use Leaky ReLU activation. The fully-connected layer in the visual encoder contains
128 units and also uses Leaky ReLU as the activation function. Each of the other four fully-connected
layers consists of 128 units and uses the Swish activation function. The output layer is just a linear
layer with the output size equal to the size of action space. We train the policies using PPO with a
clipped surrogate objective [39]. An in-depth review of this algorithm can be found in the Appendix.
The advantage for the policy gradient is calculated by GAE [40]. The value function (critic)V (st)
is represented as another deep neural network with similar architecture except the output layer is a
single unit. The networks are built on the open source library PyTorch.

4 Synthetic Dataset and Fish Counting

Our simulation is developed on Unity Engine¶ with ML-Agents toolkit [46], and Crest Ocean System
HDRP asset|| is utilized to create the effect of sun and ocean waves. The simulation is controlled by
parameters including, but not limited to, �sh biological details such as �sh species, count, size, and
speed; temperature and light preferences; latitude, longitude, date and time; wave size, sediment and
chlorophyll concentrations; sunlight color and intensity; and light attenuation and scattering. A major
drawback of prior �sh simulation systems [31, 1] is the need for manual parameter tuning when
applying the simulation to new species or new environments. However, in this work we leverage the
power of DRL to train the �sh to adapt to changing environmental conditions given their biological
data, and apply the species-speci�c trained models to emulate the corresponding swimming patterns.
We also use the physically-based environment simulation described in the Appendix to control the
scene with a small number of hyperparameters instead of extensive adjustment with programmable
shaders. These improvements signi�cantly automate the simulation process and allow us to generate
an arbitrarily large and varied dataset by randomly setting the above mentioned parameters within a
physically valid range. Fig. 3 displays an example of a synthesized dataset.

The �sh counting system comprises three modules: an image pre-processing module, which converts
the input video to a sequence of images and applies denoising; a �sh detection module, which is a
trained network based on YOLOv4 [47] with the synthetic dataset; and a �sh counting module. The
system takes as input a �sh cage video, and outputs an estimate of the total number of �sh shown in
the video. The details of each component can be found in the Appendix.

¶available athttps://unity3d.com/
||available athttps://assetstore.unity.com/packages/tools/particles-effects/crest-oc

ean-system-hdrp-164158 under Standard Unity Asset Store EULA license

5

	Introduction
	Related Work
	Fish Simulation
	Synthetic Dataset and Fish Counting
	Experiments and Results
	Conclusions and Future Work

